Classical Structured Prediction Losses for Sequence to Sequence Learning

Sergey Edunov*, Myle Ott*

Michael Auli, David Grangier, Marc'Aurelio Ranzato

facebook Artificial Intelligence

tt M

Michael Auli

David Grangier Marc'Aurelio Ranzato

Training Seq2Seq models

Source:

Wir müssen unsere Einwanderungspolitik in Ordnung bringen.

Target: We have to fix our immigration policy.

$$\log p(\mathbf{t}|\mathbf{x}) = -\sum_{i=1}^{n} \log p(t_i|t_1, ..., t_{i-1}, \mathbf{x})$$

Training Seq2Seq models

Source: Wir müssen unsere Einwanderungspolitik in Ordnung bringen.

Target: We have to fix our immigration policy.

$$\log p(\mathbf{t}|\mathbf{x}) = -\sum_{i=1}^{n} \log p(t_i|t_1, \dots, t_{i-1}, \mathbf{x})$$

Source: Wir müssen unsere Einwanderungspolitik in Ordnung bringen. Model output: We need to fix our

 $u_i = \arg\max_u p(u|u_1, ..., u_{i-1}, \mathbf{x})$

Decoding is autoregressive.

Exposure bias: training and testing are inconsistent

4

Evaluation

Training criterion (NLL) != Evaluation criterion (BLEU) Evaluation criterion requires decoding Evaluation criterion is not differentiable

Sequence level training with Neural Nets

Reinforcement Learning-inspired methods MIXER (Ranzato et al., ICLR 2016) Actor-Critic (Bahdanau et al., ICLR 2017)

Using beam search at training time: Beam search optimization (Wiseman et al. ACL 2016) Distillation based (Kim et al., EMNLP 2016)

Sequence level training before Neural Nets

How classical structure prediction compare to recent methods? Classical losses for log-linear models, do they work for neural nets?

Bottou et al. "Global training of document processing systems with graph transformer networks" CVPR 1997 Collins "Discriminative training methods for HMMs" EMNLP 2002 Taskar et al. "Max-margin Markov networks" NIPS 2003 Tsochantaridis et al. "Large margin methods for structured and interdependent output variables" JMLR 2005 Och "Minimum error rate training in statistical machine translation" ACL 2003 Smith and Eisner "Minimum risk annealing for training log-linear models" ACL 2006 Gimpel and Smith "Softmax-margin CRFs: training log-linear models with cost functions" ACL 2010

Baseline: Token Level NLL

'Locally' normalized over vocabulary.

Sequence Level NLL

9

Sequence Level NLL

Source:

Wir müssen unsere Einwanderungspolitik in Ordnung bringen.

Target: We have to fix our immigration policy.

	Beam:			
	BLEU	Model score		
	45.5	-0.23	We should fix our immigration policy.	*
	75.0	-0.30	We need to fix our immigration policy.	u
$\mathcal{U}(\mathbf{x}) \prec$	36.9	-0.36	We need to fix our policy policy.	
	66.1	-0.42	We have to fix our policy policy.	
	66.1	-0.44	We've got to fix our immigration policy.	
	_			

Sequence Level NLL

Source:

Wir müssen unsere Einwanderungspolitik in Ordnung bringen.

Target: We have to fix our immigration policy.

Expected Risk

$$\mathcal{L}_{\text{Risk}} = \sum_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \cot(\mathbf{t}, \mathbf{u}) \frac{p(\mathbf{u} | \mathbf{x})}{\sum_{\mathbf{u}' \in \mathcal{U}(\mathbf{x})} p(\mathbf{u}' | \mathbf{x})}$$

Source:

Wir müssen unsere Einwanderungspolitik in Ordnung bringen.

Target:

Beam:

We have to fix our immigration policy.

$$cost(\mathbf{t}, \mathbf{u}) = 1 - BLEU(\mathbf{t}, \mathbf{u})$$

BLEU	Model score	
45.5	-0.23	We shou
75.0	-0.30	We need
36.9	-0.36	We need
66.1	-0.42	We have
66.1	-0.44	We've a

We should fix our immigration policy. We need to fix our immigration policy. We need to fix our policy policy. We have to fix our policy policy. We've got to fix our immigration policy.

> Ayana et al. (2016) Shen et al. (2016)

12

Expected Risk

$$\mathcal{L}_{\text{Risk}} = \sum_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \cot(\mathbf{t}, \mathbf{u}) \frac{p(\mathbf{u} | \mathbf{x})}{\sum_{\mathbf{u}' \in \mathcal{U}(\mathbf{x})} p(\mathbf{u}' | \mathbf{x})}$$

Source:

Wir müssen unsere Einwanderungspolitik in Ordnung bringen.

Target:

We have to fix our immigration policy.

$$cost(\mathbf{t}, \mathbf{u}) = 1 - BLEU(\mathbf{t}, \mathbf{u})$$

Beam: BLEU Model score 45.5 -0.23 ↓ 75.0 -0.30 ↓ 36.9 -0.36 ↓ 66.1 -0.42 ↓ 66.1 -0.44 ↓

We should fix our immigration policy. We need to fix our immigration policy. We need to fix our policy policy. We have to fix our policy policy. We've got to fix our immigration policy.

facebook Artificial Intelligence

 $\mathcal{U}(\mathbf{x})$

(expected BLEU=58)

Ayana et al. (2016) Shen et al. (2016)

13

Other sequence level training losses Check our paper!

- Max-Margin
- Multi-Margin
- Softmax-Margin

Results on IWSLT'14 De-En

	TEST
TokNLL (Wiseman et al. 2016)	24.0
BSO (Wiseman et al. 2016)	26.4
Actor-Critic (Bahdanau et al. 2016)	28.5
Phrase-based NMT (Huang et al. 2017)	29.2

Results on IWSLT'14 De-En

	TEST
TokNLL (Wiseman et al. 2016)	24.0
BSO (Wiseman et al. 2016)	26.4
Actor-Critic (Bahdanau et al. 2016)	28.5
Phrase-based NMT (Huang et al. 2017)	29.2
our TokNLL	31.8

Results on IWSLT'14 De-En

	TEST
TokNLL (Wiseman et al. 2016)	24.0
BSO (Wiseman et al. 2016)	26.4
Actor-Critic (Bahdanau et al. 2016)	28.5
Phrase-based NMT (Huang et al. 2017)	29.2
our TokNLL	31.8
SeqNLL	32.7
Risk	32.8
Max-Margin	32.6

Fair Comparison to BSO

	TEST
TokNLL (Wiseman et al. 2016)	24.0
BSO (Wiseman et al. 2016)	26.4
Our re-implementation of their TokNLL	23.9
Dick on ton of the choice Tekhil I	06.7
RISK ON TOP OF THE ABOVE TOKNEL	20.7

L

facebook Artificial Intelligence Methods are comparable once the baseline is the same...

Diminishing Returns

Better if pre-trained model had label smoothing.

		valid	test
base	TokNLL	32.96	31.74
	Risk init with TokNLL	33.27	32.07
	Δ	0.31	0.33
label smoothing	TokLS	33.11	32.21
	Risk init with TokLS	33.91	32.85
	Δ	0.8	0.64

Accuracy vs speed trade-off: offline/online generation of hypotheses.

	valid	test
Online generation	33.91	32.85
Offline generation*	33.52	32.44

*Offline is 26x faster than online

better result when **combining** token-level + sequence-level loss

		valid	test
Single Task	TokLS	33.11	32.21
	Risk only	33.55	32.45
	Δ	0.44	0.24
Combined	Weighted Risk + TokLS	33.91	32.85
	Δ	0.8	0.64

Bigger search space size = better performance

It is also more computationally expensive

All structural losses are **comparable**

	test
TokNLL	31.78
TokNLL+Smoothing	32.23
Sequence NLL	32.68
Risk	32.84
Max Margin	32.55
Multi Margin	32.59
Softmax Margin	32.71

Summary

Initialize from a model pre-trained at the token level. Training with search is excruciatingly **slow**...

Sequence level training does improve, but with diminishing returns.

Specific loss to train at the sequence level does not matter.

Important to use **pseudo-reference** as opposed to real reference.

Code at: https://github.com/pytorch/fairseq/tree/classic_seqlevel

Questions?

