

Analyzing Uncertainty in Neural Machine Translation

Myle Ott myleott@fb.com

Michael Auli

David Grangier

Marc'Aurelio Ranzato

Facebook Al Research

Background

Neural Machine Translation

Input: source sentence $X = \{x_1, ..., x_N\}$

$$X = \{x_1, ..., x_N\}$$

Output: target translation $Y = \{y_1, ..., y_T\}$

$$Y = \{y_1, ..., y_T\}$$

$$p(Y|X;\theta) = \prod_{t=1}^{T} p(y_t|y_{1:t-1}, X;\theta)$$

.\| Background

Training: maximum likelihood (autoregressive) with cross entropy loss

$$\mathcal{L}_{\mathrm{ML}} = \sum_{t=1}^{T} \log p(y_t | y_{1:t-1}, X; \theta)$$

Inference: sampling or MAP

$$\hat{y}_{\text{MAP}} = \underset{w_{1:T}}{\text{arg max}} \sum_{t} \log p(w_t | w_{1:t-1}, X; \theta)$$

.\| Background

Training: maximum likelihood (autoregressive) with cross entropy loss

$$\mathcal{L}_{\mathrm{ML}} = \sum_{t=1}^{T} \log p(y_t | y_{1:t-1}, X; \theta)$$

Inference: sampling or MAP Intractable to enumerate

$$\hat{y}_{\text{MAP}} = \underset{w_{1:T}}{\operatorname{arg\,max}} \sum_{t} \log p(w_t | w_{1:t-1}, X; \theta)$$

.\| Background

Approximate inference with beam search

- Decode sequence left-to-right and keep K best hypotheses at each step
- Equiv. to greedy search when the beam width (K) = 1

.\| This work

Goal: Investigate the effects of uncertainty in NMT model fitting and search

.\| This work

.\\ This work

.\| This work

.\| This work

.\\ This work

.\\ This work

.\| This work

.\\ This work

.\\ This work

Goal: Investigate the effects of uncertainty in NMT model fitting and search

- Do NMT models capture uncertainty, and how is this uncertainty represented in the model's output distribution?
- How does uncertainty affect search?
- How closely does the model distribution match the data distribution?
- How do we answer these questions with (typically) only a single reference translation per source sentence?

.\\ Experimental setup

Convolutional sequence-to-sequence models* (Gehring et al., 2017)

Evaluation: compare translations with BLEU (Papineni et al., 2002)

• Modified n-gram precision metric, values from 0 (worst) to 100 (best)

Datasets: WMT14 English-French and English-German

• Mixture of news, parliamentary and web crawl data

* Results hold for other tested architectures too, e.g., LSTM

Question: How much uncertainty is there in the model's output distribution?

Experiment: How many independent samples does it take to cover most of the sequence-level probability mass?

Model's output distribution is highly uncertain!

 Even after 10K samples we cover only 25% of sequence-level probability mass

What about beam search?

Beam search is very efficient!

The reference score (••••) is lower than beam hypotheses

What is the quality (BLEU) of these translations?

. \ Uncertainty and Search

Beam search is efficient and produces accurate translations

Sampling produces increasingly likely hypotheses, but these get worse BLEU after ~200

.\\ Uncertainty and Search

Source: The first nine episodes of Sheriff Callie 's Wild West will be available (...)

Reference: Les neuf premiers épisodes de shérif Callie's Wild West seront disponibles (...)

Hypothesis: The first nine episodes of Sheriff Callie 's Wild West will be available (...)

.\\ Uncertainty and Search

Source: The first nine episodes of Sheriff Callie 's Wild West will be available (...)

Hypothesis: The first nine episodes of Sheriff Callie 's Wild West will be available (...)

. \ Uncertainty and Search

Copies* make up 2.0% of the WMT14 En-Fr training set, but are over-represented in the output of beam search

Among beam hypotheses, copies account for:

Beam=1: 2.6% Beam=5: 2.9% Beam=20: 3.5%

* a copy is a translation that shares >= 50% of its unigrams with the source

.\\ Uncertainty and Search

facebook Artificial Intelligence Research (WMT17 En-De)

.\| Uncertainty and Search

.\\ Uncertainty and Search

.\| Uncertainty and Search

Yes, with interesting effects on search!

Follow-up: How is it represented? Does it match the data distribution?

Challenging because:

- We typically observe only a single sample from the data distribution for each source sentence (i.e., one reference translation)
- The model distribution is intractable to enumerate

.\\ Necessary matching conditions

What are the necessary conditions for the model distribution to match the data distribution:

- ...at the token level?
- ...at the sequence level?
- ...when considering multiple reference translations?

. \ \ Necessary matching conditions—Token Level

Histogram of unigram frequencies

facebookArtificial Intelligence Research

31

Necessary matching conditions—Token Level

Histogram of unigram frequencies

Beam under-estimates the rarest words

(WMT14 En-Fr)

. \ \ Necessary matching conditions—Token Level

Histogram of unigram frequencies

Beam under-estimates the rarest words

Beam over-estimates frequent words. We should expect this!

. \ \ Necessary matching conditions—Token Level

Histogram of unigram frequencies

Beam under-estimates the rarest words

Beam over-estimates frequent words. We should expect this!

Sampling mostly matches the **reference** data distribution

.\\ Necessary matching conditions—Sequence Level

Synthetic experiment:

- Retrain model on news subset of WMT, which does not contain copies
- Artificially introduce copies in the training data with probability p_{noise}
- Measure rate of copies among sampled hypotheses

. \ \ Necessary matching conditions—Sequence Level

. \ \ Necessary matching conditions—Sequence Level

Model under-estimates copies at a sequence level

(WMT17 En-De)

.\\ Necessary matching conditions—Sequence Level

p_{noise} controls rate of **exact copies**

Partial copies* do not appear in training, yet...

* A partial copy has a unigram overlap of >= 50% with the source

.\| Necessary matching conditions—Sequence Level

The model smears probability mass in hypothesis space!

(WMT17 En-De)

.\\ Necessary matching conditions—with Mult. References

Question: Can we use BLEU to assess how well the model distribution matches the data distribution?

- Collect 10 additional reference translations from distinct human translators
- 500 sentences (En-Fr) and 500 sentences (En-De)
- 10K sentences total
- Available at: github.com/facebookresearch/analyzing-uncertainty-nmt

oracle reference: BLEU w.r.t. best matching reference

average oracle: average oracle reference BLEU over top-K hypotheses

facebook Artificial Intelligence Research

.\|

refs covered: number of distinct references (out of 10) matched to at least one hypothesis

refs covered: number of distinct references (out of 10) matched to at least one hypothesis

Sampling covers more hypotheses (is more diverse) than beam search

.\\ Conclusion

Poster #163

- NMT models capture uncertainty in their output distributions
- Beam search is **efficient** and **effective**, but prefers frequent words
- Degradation with large beams is mostly due to **copying**, but this can be mitigated by **filtering**
- Models are well calibrated at the token level, but smear probability mass at the sequence level
- Smearing may be responsible for lack of diversity in beam search outputs

Dataset link: github.com/facebookresearch/analyzing-uncertainty-nmt

<u>Source</u>: Should this election be decided two months after we stopped voting?

<u>Ref</u>: Cette élection devrait-elle être décidée deux mois après que le vote est terminé?

<u>Low BLEU</u>: Ce choix devrait-il être décidé deux mois après la fin du vote?

High BLEU: Cette élection devrait-elle être décidée deux mois après l'arrêt du scrutin?

<u>Source</u>: The first nine episodes of Sheriff <unk> 's Wild West will be available (...)

<u>Ref</u>: Les neuf premiers épisodes de <unk> <unk> s Wild West seront disponibles (...)

<u>Low BLEU</u>: The first <unk> <unk> of <unk> <unk> s Wild West will be available (...)

Output is a "copy" in the source language!

- Train model on news subset of WMT, which does not contain copies
- Artificially introduce copies in training data with p_{noise}
- Small amounts of copy noise lead to a large drop in BLEU for beam k=20

- During decoding we pay a large penalty for the first copied word
- Subsequently, there is little uncertainty—just continue copying
- Large beams increase chance of reaching the "copy" mode

.\\ Necessary matching conditions—Sequence Level

Set-level calibration

(Guo et al., 2017; Kuleshov & Liang, 2015)

$$\underset{x \sim p_d}{\mathbb{E}}[\mathbb{I}\{x \in S\}] = p_m(S)$$

- x-axis: model score of 200 beam hypos
- y-axis: rate at which reference translation is among beam hypos

.\| Necessary matching conditions—with Mult. References

	beam		sampling
	k = 5	k = 200	k = 200
Prob. covered	4.7%	11.1%	6.7%
Sentence BLEU			
single reference	41.4	36.2	38.2
oracle reference	70.2	61.0	64.1
average oracle	65.7	56.4	39.1
- # refs covered	1.9	5.0	7.4
Corpus BLEU (multi-bleu.pl)			
single reference	41.6	33.5	36.9
10 references	81.5	65.8	72.8